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Abstract

A model is presented that provides a resolution to a fundamental paradox in bone physiology, namely, that the strains applied to

whole bone (i.e., tissue level strains) are much smaller (0.04–0.3 percent) than the strains (1–10 percent) that are necessary to cause
bone signaling in deformed cell cultures (Rubin and Lanyon, J. Bone Joint Surg. 66A (1984) 397–410; Fritton et al., J. Biomech. 33
(2000) 317–325). The effect of fluid drag forces on the pericellular matrix (PM), its coupling to the intracellular actin cytoskeleton
(IAC) and the strain amplification that results from this coupling are examined for the first time. The model leads to two predictions,

which could fundamentally change existing views. First, for the loading range 1–20MPa and frequency range 1–20Hz, it is, indeed,
possible to produce cellular level strains in bone that are up to 100 fold greater than normal tissue level strains (0.04–0.3 percent).
Thus, the strain in the cell process membrane due to the loading can be of the same order as the in vitro strains measured in cell

culture studies where intracellular biochemical responses are observed for cells on stretched elastic substrates. Second, it
demonstrates that in any cellular system, where cells are subject to fluid flow and tethered to more rigid supporting structures, the
tensile forces on the cell due to the drag forces on the tethering fibers may be many times greater than the fluid shear force on the cell

membrane. r 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bone is a dynamic system that can adjust its structure
to its mechanical loading. The customary strains in
whole bone in vivo are typically in the range of 0.04–0.3
percent for animal and human locomotion, but seldom
exceed 0.1 percent (Rubin and Lanyon, 1984; Fritton
et al., 2000). Osteocytes (Fig. 1) are believed to be the
critical mechanical sensor cells (Cowin et al., 1991;
Burger and Klein-Nulend, 1999), although the mechan-
ism by which osteocytes perceive mechanical load is not
known. One widely held idea is that cell membrane
stretch occurs as a direct result of surrounding tissue
deformation. If this is the case, then strain on osteocyte
membranes should be comparable to the bone tissue

strain. However, in vitro studies show that in order to
induce any cellular response by direct mechanical
deformation of bone cells, deformations need to be
one to two orders of magnitude larger than the bone
tissue strains normally experienced by the whole bone in
vivo (Burger and Veldhuijzen, 1993; You et al., 2000).
Similar cell strain magnitudes are needed to activate
fibroblasts and chondrocytes (B15 percent) (Almekin-
ders et al., 1993; Guilak et al., 1995), suggesting that in
their sensitivity to mechanical strain, osteocytes may
not be different from other connective tissue cells.
However, in bone the larger strains needed to stimulate
osteocytes cannot be derived directly from matrix
deformations, as they would cause bone fracture. Thus,
in bone there is an inherent contradiction between
material and biological stimulation requirements. We
present here an hypothesis and model to deal with this
contradiction.
We consider first the flow of bone fluid due to

mechanical loading. Between the osteocyte cell process
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membrane and canalicular wall is the pericellular space
through which the bone fluid flows. A pericellular
organic matrix appears to fill the space (Sauren et al.,
1992; Aarden et al., 1996). This matrix is supported by
transverse fibrils (Shapiro et al., 1995) which appear to
anchor and center the cell process in its canaliculus.
When a whole bone is deformed, the deformation-
induced pressure gradient will cause bone fluid to flow in
the pericellular space of the lacunar-canalicular system
(Piekarski and Munro, 1977; Weinbaum et al., 1994;
Cowin, 1999; Knothe Tate and Knothe, 2000) and
induce a drag force on the matrix fibers.
As proposed in Weinbaum et al. (1994) the fluid flow

will also induce shear stress on the cell process
membrane. These stresses have been shown to mechani-
cally stimulate bone cells (Reich and Frangos, 1991;
Williams et al., 1994). We thus ask which mechanical
signal is more important in stimulating osteocytes? If the
drag force on the matrix is the larger of the two forces,
can it lead to an amplification of the whole bone strain
at the cellular level?
Our model leads to two remarkable predictions. First,

given an attached pericellular matrix (PM), the fluid
drag force on the PM per unit length of cell process will
be shown to be more than an order of magnitude larger
than the fluid shearing force on the process membrane
per unit length. Second, the fluid drag on an attached
PM can lead to circumferential (hoop) strains in the
membrane-cytoskeleton of the cell process which are up
to two orders of magnitude greater than the strains in
the mineralized bone matrix.

2. Model development

Our idealized model for an individual canaliculus with
its central cell process (Fig. 2) is a tube containing a
centrally positioned osteocyte process and its surround-
ing fluid annulus filled with a mesh-like PM.

2.1. The PM around the osteocyte process

For the pericellular component, only two structural
elements are critical for this mechanical model: 1) a
space filling PM with a fiber spacing D that is sufficiently
small, and 2) transverse fibrils which tether the cell
process to the canalicular wall. From a mechanics point
of view, any matrix, which has these two characteristics,
should function equivalently, although the degree of
strain amplification will change with the fiber spacing D:
There is growing evidence to support this basic
structure. First, a space filling PM surrounding osteo-
cytes is well-established (Wassermann and Yaeger, 1965;
Sauren et al., 1992; Shapiro et al., 1995; and Aarden
et al., 1996). Second, transverse tethering elements were
first clearly identified in Fig. 3 in Shapiro et al. (1995)
and also observed in our own recent EM studies. The
pericellular space surrounding the osteocyte process
varies from 14 to 100 nm (Cooper et al., 1966; Weinger
and Holtrop, 1974; King and Holtrop, 1975), depending
on species, age, age of osteocyte, histological bone type,
skeletal location etc. Our own EM studies on adult mice
indicate a pericellular space of 30–50 nm. We also
observed that the cell process is invariably located at
the center of the canalicular cross-section suggesting
that the transverse fibrils are tension elements that
anchor and position the cell process within the
canaliculus.
Both albumin and proteoglycan exist in the pericel-

lular space (Owan and Triffitt, 1976; Sauren et al., 1992).
The effective diameter of albumin is B7 nm, similar to
the spacing of glycosaminoglycans (GAG) side chains
along a proteoglycan monomer (Buckwalter and Rosen-
berg, 1982). In our previous studies (Weinbaum et al.,
1994; Cowin et al., 1995), Weinbaum and Cowin showed
that this value of pore size leads to shear stresses of 0.5
to 3.0 Pa for mechanical loads in the physiological range
and good agreement with the experimental data for the
relaxation time of stress generated potentials (SGP) in

Fig. 1. This figure illustrates the paradox addressed in this paper. (a) An illustration of the small strains that the whole bone experiences, strains that

are in the range 0.04 to 0.3 percent and seldom exceed 0.1 percent. The last two panels, (b) Photomicrograph of osteocytes encased in bone matrix (c)

Osteocyte in lacuna, illustrate that large stains (1 to 10 percent) on cell membrane are needed to induce biochemical intracellular response in vitro.

The paradox in the bone mechanosensing system is that the strains that activate the bone cells are two orders of magnitude larger than the strains to

which the whole bone organ is subjected.
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bone under four point bending (Salzstein and Pollack,
1987; Scott and Korostoff, 1990). Thus, in the present
work, we assume a PM with a most likely pore size of
7 nm.
Finally, the matrix must be attached to the cell

process and the canalicular wall in order for the drag
force to be transmitted to the membrane and its
underlying intracellular actin cytoskeleton (IAC). If
such linker molecules are present, drag forces exerted on
the matrix fibers will produce a tensile stress on these
linker molecules which, in turn, will produce radial
(hoop) strain in the IAC as schematically shown in
Fig. 2. Possible candidates for these attachment mole-

cules are CD44, laminin, and various integrins. (Gohel
et al., 1995; Nakamura, 1995).

2.2. Structure of cell process IAC

Osteocyte processes contain a space filling actin
bundle (King and Holtrop, 1975; Tanaka-Kamioka
et al., 1998), whose actin filaments are cross-linked at
regular intervals along the axis of the process by a linker
molecule recently identified as fimbrin (Tanaka-Kamio-
ka et al., 1998) as shown in Fig. 2c. The axial actin
filaments are B6 nm in diameter. Fimbrin is also found
in intestinal microvilli (Glenney et al., 1981) as well as
non-intestinal cell microvilli (Bretscher and Weber,
1980). The typical spacing of fimbrin cross-linked actin
filaments in microvilli is B25 nm (Chailley et al., 1989).
This spacing is consistent with the EM observation in
King and Holtrop (1975) and Tanaka-Kamioka et al.
(1998) for an osteocyte process.

3. Mathematical formulation

3.1. The drag force on the fibers

The solution for the fluid flow in the fiber filled fluid
annulus surrounding the cell process is described in

Fig. 2. Schematic model showing the structure of the PM, the IAC inside the process and the connection between the PM and the IAC. (a)

Transverse cross-section of canaliculus showing the fluid annular shape of the region and transverse (radial) pericellular fibers. (b) Longitudinal

cross-section before and after the transverse elements are deformed by the flow. (c) Schematic of the cell process cytoskeletal structure in longitudinal

axial section used to estimate the Young’s modulus in the radial (vertical) direction. Since the length of the cell process is 300 times its radius, it is

considered infinite in the longitudinal (horizontal) direction. The axial actin filaments shown are modeled as continuous infinite beams with two types

of loadings depending on whether the actin filaments are peripheral or interior. The small vertical arrows indicate the direction of the loading. The

(fimbrin) links between these infinitely long beams are considered to be rigid. (d) Force balance on a transverse element.

Fig. 3. Idealized model of an osteonal unit.
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Weinbaum et al. (1994). This solution can be used to
determine the integrated shear force Fs (Fig. 2b) on the
entire cell process membrane,

Fs ¼ 2paLtw ¼ 2paL m
qu
qr

� �

¼ 2paL
b

g

� �
qp
qR

A1I1
g
q

� �
� B1K1

g
q

� �� �
: ð1Þ

Here a is the radius of the osteocytic process, L is the
length of the cell process, m is the fluid viscosity, R is the
radial coordinate in the osteon (Fig. 3), or the axial
coordinate in the canaliculus, r is the radial coordinate
in the canaliculus, p is the fluid pressure, b is the radius
of the canalicular wall, and tw is the fluid shear stress on
the osteocyte process membrane. The coefficients A1; B1;
and parameters g and q are given in Weinbaum et al.
(1994). I1 and K1 are modified Bessel functions of first
order. The radial pressure gradient qp=qR along the axis
of the fluid annulus is based on the theory in Zeng et al.
(1994) for flow in an osteon due to axial loading.
The permeability constant, kp; used to calculate tw

here depends on the spacing of the tranverse elements
(core proteins) and the GAG side chains along these
core proteins. The fiber spacing D is the primary
determinant of kp: A simple expression for kp is derived
in Appendix A, which can be found on the J. Biomech.
WEB site.
The total drag force (Fig. 2b) exerted on the

transverse elements between the canalicular wall and
the cell process membrane can be obtained by integrat-
ing the distributed force, the first term on the left hand
side of Eq. (2) in Weinbaum et al. (1994), over the fluid
annulus
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From Eqs. (1) and (2) the force ratio Fd=Fs is given by

Fr ¼ Fd=Fs ¼
2q2 A1I1 gð Þ � B1K1 gð Þ½ � � gq q2 � 1

� 	
A1I1 g=q

� 	
� B1K1 g=q

� 	 � 1:

ð3Þ

Note Fr depends only on the canalicular and fiber
geometry and is independent of qp=qR:

3.2. Flow-induced strain in the IAC

We next wish to derive a constitutive relation
coupling the deformation of the transverse fibrils in
the PM and the IAC. In our idealized model sketched
in Fig. 2d the transverse elements are treated as

inextensible but flexible tensile fibers whose load is
transduced across the cell process membrane to its IAC
whose effective Young’s Modulus is E�:

3.2.1. Force balance on IAC
The constitutive equation for the actin cytoskeleton in

the cell process is:

sr ¼ E * er; ð4Þ

where sr is the radial stress in the actin cytoskeleton and
er is its radial strain.
Although there is extensive literature for determining

E�; these studies, e.g., Satcher and Dewey (1996), Shin
and Athanasiou (1999), describe the modulus for the
3-D actin network in the main cell body but not
cytoplasmic protrusions, such as microvilli and cell
processes. The one exception is the recent model of Guo
et al. (2000) for the brush border microvilli. Therefore,
we have developed, from first principles, a new basic
model for the osteocytic cell processes based on the
ultrastructure observed in King and Holtrop (1975) and
Tanaka-Kamioka et al. (1998), see Fig. 2c. This model
for determining E� is briefly summarized in Appendix B,
which can be found on the J. Biomech. WEB site.
The final expression for E�; Eq. (B.5), is

E * ¼
203EI

l42
; ð5Þ

where EI is the flexural rigidity of an individual actin
filament and l2 is the spacing of the cross-links. Three
studies, Oosawa (1977), Kishino and Yanagida (1988)
and Dupuis et al. (1997) using different experimental
techniques indicate that EIB1:5�10�26 Nm2. Therefore,

E * ¼ 487:2 kPa: ð6Þ

One notes that this value of E� is two orders of
magnitude larger than the measured value for the
osteoblastic cell body, 2.5 kPa, measured in Shin and
Athanasiou (1999). This difference will be discussed
later.

3.2.2. Interaction between PM and IAC
The radial force balance on the cell process cytoske-

leton in Fig. 4 is given by

Pequ: ¼ sr; ð7Þ

where Pequ: is the equivalent pressure induced by the
tension bearing transverse elements in the PM:

Pequ: ¼ Tx=D2
1: ð8Þ

Here D1 is the distance between the transverse elements,
Tx is the tensile force exerted by each element and D2

1 is
its associated membrane area. From Eqs. (4), (7) and (8)

Tx ¼ D2
1Pequ: ¼ D2

1E * er: ð9Þ

The circumferential hoop strain in the cell process
membrane (the change in length per unit original length of
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the process membrane in the hoop direction) is given by

ey ¼ ly � 1 ¼ ðr1=r0Þ � 1 ¼ er; ð10Þ

where r1 and r0 are the radii of the stretched and
unstretched membrane, respectively.

3.2.3. Force balance on the transverse elements
Due to the high fiber density, the flow in the fluid

annulus is a plug flow except for the thin fiber
interaction layers that are of order D=2 near the
boundaries of the fluid annulus. Thus, the drag force
exerted on the load bearing fibers in the axial direction
can be treated as uniform.
In view of this uniform loading, the equilibrium shape

of the transverse element is the well-known catenary
equation

wfs

Tx
¼ sinh

wf d

Tx

� �
; ð11Þ

where d is the distance between the canalicular wall and
cell process membrane. In the present application Tx is
the constant radial component of the force exerted by
one transverse element on the IAC and wf is the drag
force per unit length on each transverse element. The
drag on each transverse element swf is obtained by
dividing the total drag force on all the transverse
elements in the annulus, Fd; by the total number of
tensile elements, 2pr0L=D

2
1; attached to the membrane

surface

swf ¼ Fd= 2pr0L=D
2
1

� 	
; ð12Þ

where s is the total length of the transverse element.

3.2.4. Strain on the process membrane
Substituting Eqs. (1) and (3) into Eq. (12) , we have

swf ¼
FrtwaD2

1

r0
¼

Frtwr1D
2
1

r0
: ð13Þ

Note that tw is evaluated from Eq. (28) in Zeng et al.
(1994) with a ¼ r1; and Fd in Eq. (12) includes the drag
on all the GAG side chains, which can be considered as
a distributed force on each transverse element.
From the geometry in Fig. 2, the strain ey in Eq. (10)

is given by

ey ¼
s� d

r0
: ð14Þ

Substituting Eqs. (9), (10), (13) and (14) into Eq. (11)
one obtains

b
1þ eyð Þ
ey

¼ sinh b
1þ eyð Þ
ey

1�
r0ey
s


 �� �
; ð15Þ

or

b
ð1þ eyÞ

ey
¼ sinh b

ð1þ eyÞ
ey

1�
ey

q� 1

� �� �
; ð16Þ

where

b ¼
Frtw
E *

¼
Fd

2pr0LE *
¼

Fd=A

E *
¼

fd
E *

: ð17Þ

Here A is the total area of the process membrane, and fd
is the drag force on the fibers per unit area of the cell
process membrane. Therefore, b is a new fundamental
dimensionless parameter, which relates the drag force on
the fibers to the elastic properties of the IAC.
In Cowin et al. (1995), it was shown that close

agreement with experiment could be obtained for both
the phase and magnitude of the stress generated
potential when q was approximately 2. For q ¼ 2; r0 ¼
s ¼ a ¼ b=2 and Eq. (16) reduces to

b
1þ eyð Þ
ey

¼ sinh b
1þ eyð Þ 1� eyð Þ

ey

� �
: ð18Þ

Eq. (16), or its simplified form, Eq. (18), is the basic
dimensionless relationship between the hoop strain ey on
the cell process membrane and the dimensionless fluid
dynamic loading parameter b:
Finally, the strain amplification ratio er is defined as

er ¼
ey
eb
; ð19Þ

where eb is the strain on the bone surface,

eb ¼ sb=Eb; ð20Þ

sb is the mechanical load on the whole bone and Eb is its
Young’s Modulus.

4. Parameter values

The values of the parameters a0; q; m; l and D are
discussed in detail in Weinbaum et al. (1994), Zeng et al.
(1994) and Cowin et al. (1995). It is estimated in the
literature that a is typically 50 nm (Cooper et al., 1966;
Marotti et al., 1990; note that these references suggest a
range of values depending on species, age, histological

Fig. 4. Idealized model showing the force balance on the cell process

membrane skeleton in transverse section.
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bone type, and skeletal location). In our study, we have
chosen a ¼ 50 nm. The radius a0 of the GAG side chains
is 0.6 nm (Curry, 1986) and their most likely spacing D
along the core protein is 7 nm. The length of the GAG is
20 nm and the spacing of the transverse elements is
taken to be twice this value, 40 nm, so that the extended
GAG forms a space filling arrangement. The predicted
values of q fall within the range 1:5pqp3:0; observed in
morphometric studies. In the present work, if not
specified, we assume q ¼ 2:0; and hence the nominal
width of the fluid annulus, b� a ¼ 50 nm. We also
investigate the role of q by looking at the changes of the
force ratio, Fr; and hence the dimensionless parameter b;
when q is changed. The viscosity m of the fluid in the
annulus is 10�2 dyn/cm2, the value of water.

5. Results

In Fig. 5 we have plotted our solution for the force
ratio, Fr ¼ Fd=Fs; as a function of the GAG spacing D:
As shown in Eq. (3), Fr is independent of the magnitude
and frequency of the mechanical loading and thus an
intrinsic property of the matrix and canaliculus geome-
try. The important result discovered in plotting Fr
against D was that Frb1 over the entire physiological
range of D (5B12 nm). For D ¼ 7 nm, the most likely
value of D; the drag force is 19.6 times larger than the
shear force per unit length of cell process. As the fiber
spacing increases, the relative importance of the drag
force will decrease markedly, and when the fiber spacing
D ¼ 39 nm, a non-physiological value, Fd=Fs will be
approximately unity.
The effect of frequency on the strain amplification

ratio and the absolute strain at different loading
magnitudes are shown in Fig. 6, where er; given by

Eq. (19), and ey; given by Eq. (14), are both plotted
against the loading frequency from 1 to 20Hz. The hoop
strain is calculated at the position of maximum flow or
pressure gradient, which is located at, R ¼ Ri; the
surface of the Haversian canal. Thus, the hoop strain
and the strain amplification ratio shown in Figs. 6a and
b can be considered as an upper bound. The curves show
a monotonic increase in the amplification ratio as a
function of frequency for a prescribed loading. One
observes that the amplification ratio varies from 19 to
122 and depends significantly on the magnitude of the
loading. When the loading magnitude is 1MPa,
corresponding to 50 m strain at the osteonal lumen, er ¼
122 at 20Hz. For this loading the cell process strain is
0.68 percent. For a 20MPa load at 20Hz, er ¼ 44 and
the cell process strain is 4.9 percent. The corresponding
values of er at 1Hz for a 1 and 20MPa load are 51 and
19 and the corresponding strains are 0.29 and 2.1
percent, respectively. Strains of the order of 0.3 percent
or greater fall in the range where cellular level
biochemical responses have been observed in vitro in
four point bending (Pitsillides et al., 1995).
Fig. 7 compares the strains on the process membrane

using the measured value for E� for an osteoblast cell
body, 2.5 kPa (Shin and Athanasiou, 1999), and the
value for E�; 487 kPa, predicted by our model for an

Fig. 5. The relationship between force ratio Fr and average fiber

spacing D: Note the force ratio at D ¼ 7 nm is 19.6. D ¼ 7 nm is typical

of the average spacing of GAG side chains along a core protein and the

effective diameter of the albumin molecule which is known to be sieved

by an equivalent matrix in capillary endothelium. This varies between

5 and 12 nm. The force ratio Fr is defined as the ratio of the drag force

on the fibers to the shear force on the cell process membrane per unit

length of cell process.

Fig. 6. Strain amplification. (a) Plot of the strain amplification ratio er
as a function of the load frequency for different load magnitudes.

Strain amplification ratio is defined as the ratio of the hoop strain in

the cell process membrane to the bone surface strain at the osteonal

lumen. e is the strain on the whole bone; s is the load on the whole

bone. (b) Plot of the cell process membrane strain ey as a function of

the load frequency for different load magnitudes. e is the strain on the

whole bone; s is the load on the whole bone.
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actin filament bundle. For both cases, the loading on
bone is taken as 5MPa. One can see that using this
measured value for the cell body will lead to unrealis-
tically large cell process strains of 25–50 percent. In
contrast, our calculation of E� for an actin filament
bundle leads to strains of 1–2 percent, which are more
reasonable. The large increase in the value of E� for the
actin filament bundle is due to the tight packing of the
actin filaments and the close spacing l2 of the fimbrin
cross-links. This will be discussed later in Table 1.
The relationship between the dimensionless loading

parameter, b; and the strain on the cell process

membrane, ey; defined by Eq. (14), is plotted in Fig. 8,
for ey in the range 0.3–8 percent and representative
values of q between 1.2 and 6. For the osteocyte process
q lies in the range of 1.5–3.0. One of the striking features
in Fig. 6a is that the strain amplification ratio is a
function of loading at a given frequency and decreases
as the loading increases, whereas eb increases linearly
with loading. It is evident from Fig. 8 that ey does not
increase linearly with b since Eq. (16) is nonlinear. It is
much like pulling a string back on a bow and arrow. The
initial deflection is easy and the force required to
produce a large displacement increases non-linearly
with the applied force.

6. Discussion

The effect of fluid drag on PM and the resulting strain
on the IAC of the cell process and its plasma membrane
are examined for the first time using a combined
hierarchical mechanical model. The new model suggests
that the small mechanically induced strains on whole
bone at physiological loading can be greatly amplified at
the cell membrane level, if the fluid drag forces on the
PM are transmitted to the IAC in the cell process. This
amplification can lead to strains in a range where
intracellular biochemical responses have been observed
experimentally.
In the past, researchers examining the effect of fluid

flow on cells had focused their attentions nearly
exclusively on the response of cells to fluid shear stress.
The drag force exerted on PM fibers has never been
considered. However, one observes in Fig. 5, that at a
GAG spacing of 7 nm, the fiber spacing where the
matrix could serve as a molecular filter for albumin

Fig. 7. The comparison of the strain on the osteocyte process

membrane using the measured Young’s modulus of osteoblastic cell

body, E� ¼ 2:5 kPa (Shin and Athanasiou, 1999), and our predicted

the Young’s modulus of a closely packed actin filament bundle,

E� ¼ 487:2 kPa. Both strains are calculated when the loading on bone

is 5MPa.

Fig. 8. The relationship between ey and b when q ¼ 1:2; 2 or 6, see

Eq. (16), where ey is the hoop strain in the cell process membrane and b
is a dimensionless loading parameter, defined by b ¼ fd=E * :

Table 1

Sensitivity of cytoskeletal hoop strain to model parametersa

1Hz

(%)

2Hz

(%)

5Hz

(%)

10Hz

(%)

20Hz

(%)

GAG spacing D
(nm)

5 1.26 1.58 1.82 2.06 2.47

7 0.83 1.20 1.58 1.75 1.97

12 0.37 0.59 0.99 1.31 1.51

Fimbrin spacing l2
(nm)

25 0.13 0.19 0.25 0.28 0.31

50 0.83 1.20 1.58 1.75 1.97

100 5.23 7.47 9.78 10.8 12.1

Width of pericellular

space b2a (nm)

20 0.60 0.67 0.78 0.94 1.14

50 0.83 1.20 1.58 1.75 1.97

100 0.86 1.35 2.26 2.93 3.35

aTable of the predicted values of strains on the osteocyte process

membrane obtained for different values of GAG spacing D; fimbrin
spacing l2; and width of pericellular space b2a when the loading on the

whole bone is taken as 5MPa.
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(Weinbaum, 1998), and the typical spacing of GAG side
chains along protein monomers (Buckwalter and Rosen-
berg, 1982), the force ratio Fr would be B20 in the fluid
annulus. Furthermore, this ratio from Eq. (3) is indepen-
dent of the value of the loading magnitude and loading
frequency. This important result suggests that the drag
force on the fibers could be the dominant stimulus for the
cell’s mechanosensory system, rather than, or in addition
to the fluid shear stress on the cell process, as originally
proposed in Weinbaum et al. (1994).
Experimental in vitro cell culture studies on elastic

substrates have typically been performed at strain levels
of 1–10 percent (Murray and Rushton, 1990; Burger and
Veldhuijzen, 1993). Strain levels in four point bending
are significantly lower, 0.38 percent (Pitsillides et al.,
1995). However, the peak levels of the strain on whole
bone tissue range from about 0.04–0.2 percent in
humans under varied activities (Lanyon et al., 1975
and Burr et al., 1996) and 0.04–0.3 percent for animal
locomotion (Fritton et al., 2000). Thus, the strain levels
achieved in in vitro cell culture studies are much greater
than the whole tissue strains experienced physiologically
in vivo. Klein-Nulend et al., 1995 and You et al., 2000
have shown that when physiological strains of less than
one percent are applied in cell culture, there is no
observed cellular response. In contrast, Pitsillides et al.
(1995) reported rapid increase in NO production at 0.38
percent strain for bone cells in four point bending.
However, this load is at the extreme of physiological
loading. These observations for bone cells have cast
doubt on any previous theory that proposed that cell
stretch could be one of the candidates for cell activation
in bone.
The new strain amplification hypothesis and model in

the present study predict that the strain induced on the
whole bone can be amplified by a factor of 20 to 100 or
more at the cell membrane level and produce maximum
strains from 0.3 to nearly 5 percent on the cell process
membrane for mechanical loading in the physiological
range if the drag forces on the PM can be transmitted to
the IAC of the cell process. Note also that, for low
magnitude- high frequency loads, the amplification
effect is significantly greater than for high magnitude-
low frequency loads. Eqs. (15) or (16) and Fig. 8 show
that the relation between the drag force on a fiber,
Fd=ð2pr0l=D

2
1Þ; and the hoop strain, ey; on the process

membrane is nonlinear. This could be a factor in
explaining why Rubin and McLeod (1996) observed
that low magnitude, high frequency mechanical loading
appeared to be particularly effective in maintaining bone
mass.
The analysis has brought to light a fundamental new

dimensionless group, b ¼ fd=E * ; relating the drag force
on the PM to the elastic modulus of the IAC. In Fig. 8,
we have plotted the nonlinear relationship between b
and ey when ey is in the range 0.3 to 8 percent where one

would anticipate an intracellular biochemical response
to stretch. The form of Eqs. (15) and (16) is dictated by
the deformed shape of the transverse fibrils in the PM
which, in this case, is a catenary curve because the
loading due to the fluid flow is uniform. A similar
expression needs to be developed for an ellipsoidal
geometry. This would be useful in describing the flow
past the body of the osteocyte in its lacuna or the flow
through the matrix surrounding a chondrocyte.
There are several simplifications in the model. We did

not consider the change in shape of the fluid annulus or
the change in permeability of the PM due to the fluid
flow. This change is expected to be small since D will not
change significantly and the changes in cell process
diameter are at most a few percent, see Fig. 6b.
We have also treated the PM as a simple rectangular

mesh in calculating kp: However, one can show that the
basic predictions will not change significantly for a
random matrix. The key parameter in determining kp is
D: Hu et al. (2000) have shown that the surface
glycocalyx on endothelial cells has sieving properties
very close to 7 nm. Our calculation in Table 1 shows that
if we vary D from 5 to 12 nm the strain on osteocyte
process membrane will change by less than a factor of 4
for all frequencies above 1Hz.
The IAC structure assumed for the cell process is

based on numerous histological studies (Weinger and
Holtrop, 1974; King and Holtrop, 1975; Holtrop, 1975,
Shapiro et al., 1995; Tanaka-Kamioka et al., 1998). The
two key parameters are the spacing of the actin
filaments, l1; and the distance between the fimbrin linker
molecules, l2: The variation of l1 will not greatly change
our final results since the strain is induced through
bending rather than stretching of the axial actin
filaments. l2 is estimated to be B50 nm based on the
electromicrographs in Tanaka-Kamioka et al. (1998)
and the fimbrin spacing in the actin bundles of
microvilli. Distances larger than this will lead to greater
strain amplification. EM studies indicate that l2 should
be larger than l1 (Shapiro et al., 1995; Horwitz, 1997;
Tanaka-Kamioka et al., 1998). l1 has been taken as
25 nm. The calculations in Table 1 for l2 ¼ 25 nm and
100 nm indicate that l2 is a critical parameter in
predicting IAC strain. A doubling of l2 leads to a six
fold increase in cell process strain whereas the value of
E� increases as l42 ; see Eq. (5). In contrast, varying the
width of the pericellular space, b� a; from 20 to 100 nm
produces much smaller strain variations in the IAC, see
Table 1.
An important insight in formulating the new hypoth-

esis was the realization that the cytoskeleton of the
osteocyte process closely resembles the actin filament
bundles in the microvilli of the small intestine and
proximal tubule (Maunsbach, 1973; Mooseker and
Tilney, 1975; Tanaka-Kamioka et al., 1998). The
structural rigidity of this actin filament bundle to
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bending was examined for the first time in Guo et al.
(2000) where it is shown that the brush border microvilli
are relatively stiff structures that are well suited to serve
as mechanotransducers. One of the crucial observations
for the cell process is that it is invariably located at the
center of the canalicular cross-section in electron
micrographs. Since the cell process is relatively stiff
and the canaliculi are seldom straight conduits, it is
hard to imagine how such centering can be achieved
without there being tensile supporting structures which
tether the cell process and its cytoskeleton to the
canalicular wall. This indirect evidence let the authors
to hypothesize the existence of the transverse elements in
the PM, before we were aware that such structures have
already been identified in Shapiro et al. (1995). Our own
recent electron microscopic studies have since confirmed
this observation.
Although we have applied the model using pressure

gradients calculated for an osteonal geometry, the bone
geometry is secondary since the strain amplification
mechanism applies at the canalicular level. While the
PM is believed to contain proteoglycans (Sauren et al.,
1992), this is also non-essential. There are other
candidates for the PM, e.g., CD44 molecules with
GAG side chains. CD44 has a terminus for hyaluronan,
a major component of endothelial glycocalyx. The
particular molecules involved are not important in a
mechanical model. The results at the cellular level
depend only on the canalicular geometry, the fiber
spacing and the assumed model for the IAC.
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Appendix A. The calculation of the permeability kp in the
pericellular space

If the GAG side chains form a rectangular lattice that
radiates fore and aft and laterally about the core protein
(proteoglycan) at intervals D along its length (see Fig. 2a
and b), the total length of GAG associated with each
core protein is s=Dð4lGAGÞ; where s is the length of the
core protein and lGAG is the length of the GAG side
chains. Since we have assumed D ¼ 7 nm and
lGAG ¼ 20 nm, the length ratio between the GAG side
chains and the core proteins, rl ¼ 4lGAG=Db1; which
suggests that the length of the GAG far exceeds that of
the core protein. The drag on the core protein is thus
largely due to its GAG side chains which, for simplicity,

are arranged either transverse or parallel to the
flow with equal length. The weighted hydraulic
resistance due to the GAG plus the core protein is thus
given by

1

kp
¼

rl
rl þ 1

1

2kp1
þ

1

2kp2

� �
þ

1

rl þ 1

1

kp1

� �
; ðA:1Þ

where kp1 is the Darcy permeability of the transverse
fibers including the core proteins and kp2 the axial fibers.
The expression for kp1 is given in Tsay and Weinbaum
(J. Fluid Mech. 226, 125–148, 1991) as

kp1 ¼ 0:0572a20
D
a0

� �2:377

; ðA:2Þ

The expression for kp2 is given in Cowin et al. (1995) as

kp2 ¼ 0:147a20
D
a0

� �2:285

: ðA:3Þ

Appendix B. The method for estimating the Young’s

modulus of the cytoskeleton structure, E * ; in the radial

direction

The purpose of this appendix is to describe
the derivation associated with the estimate of
487.2 kPa for the Young’s modulus of the cell process
IAC. The derivation was illustrated in Fig. 2c in
main body and Figs. 9 and 10 in this appendix. The
longitudinal actin filaments are modeled as infinitely
long continuous beams. The outer filaments beneath
process membrane (Fig. 9b) have a continuously
distributed load representing the load transmitted by
the transverse elements in the PM, whereas the inner
ones have point force loads, P; transmitted by the
fimbrin cross-links (Fig. 9a). The (fimbrin) links between
these infinitely long beams are considered to be rigid
because the deflection of the actin filament, which is
loaded transversely, will be much larger than the strain
of the fimbrin linker molecules which are loaded axially.
The radial deflection of the cell process cytoskeletal
structure illustrated in Fig. 2c is %dd ¼ %dd1 þ 2%dd2 þ %dd3;
where the %ddi; i ¼1, 2, 3, are illustrated in Fig. 9. The
bar is superimposed upon these deflections to indicate
that they are average, or mean, deflections. The gage
length over which the deflection occurs is 2l1; where l1 is
illustrated in Fig. 9, and the radial strain is given by
e ¼ %dd=2l1: It follows from Hooke’s law that this strain is
related to the stress s by E * ¼ s=e; and it is the value of
the Young’s modulus E� that we seek in this calculation.
The stress s may also be expressed in terms of quantities
illustrated in Fig. 2c, namely the length l1; the length l2
and the distributed load w per unit length: s ¼
w�l2�8=l2�2p�2l1: Combining these results to obtain
an expression for E�; we find that E� can expressed in
terms of the three mean deflections and the known
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distributed loading w: Thus

E * ¼
4w=p

%dd1 þ 2%dd2 þ %dd3
: ðB:1Þ

This result reduces the determination of E� to the
determination of the three %ddi; i ¼ 1; 2, 3. The determina-
tion of these quantities is described in the next
paragraph.
The theory used for the determination of the three %ddi;

i ¼ 1; 2, 3, is classical beam theory. The fourth order
differential equation governing the deflection y of the a
beam is given by

EI
d4y

dx4
¼ w; ðB:2Þ

where E is the Young’s modulus of the beam material, I
is the area moment of inertia of the cross-sectional area
about a centroidal axis, wðxÞ is the distributed load
along the beam and x is the coordinate running along
the longitudinal axis of the beam. The product EI is the
flexural rigidity. We apply Eq. (B.2) and the associated
theory to the continuous infinite beam models of Fig. 9
to determine the three quantities, %ddi; i ¼ 1; 2, 3. Consider
first the continuous infinite beam model of Fig. 9a. For
this beam wðxÞ ¼ 0 (see Fig. 10a) and there are three
geometric boundary conditions for this beam, namely
that the slope at 0 and l ¼ l2=2, or at n�l (where n is any
integer), is zero and the deflections at 0 and lare of
opposite sign. Since Eq. (B.2) is a fourth order ordinary
differential equation, a fourth boundary condition is
needed. This must be a forceFor a momentFrelated
condition because all the symmetry in the situation has
been exploited with the geometric boundary conditions.
However, it is not obvious from elementary beam theory
how one might obtain the fourth condition, the one
related to force - or a moment, due to the fact that the
beam is infinite in length. Actually the long length of the
beam is the key to the solution because the equation of
three moments (Timoshenko and Young, 1945, Theory
of Structures, McGraw Hill, New York, pp. 343.) may
be used to find the moment at a point of application of
the cross-link force. The moment is found to be the
magnitude of P�l2=2; or w=2:Note from Fig. 2c that the
force P must be equal to w�l2: The mean deflections,
which are equal, are then given by

%dd1 ¼ %dd2 ¼
5Pl32

3072EI
: ðB:3Þ

This result gives the deflections %ddi; i ¼ 1; 2, in terms of
the flexural rigidity EI of the longitudinal actin filament,
the force P ¼ w�l2 that the fimbrin cross-link exerts
transversely on the infinite beam, and the length l2:
We also need to determine a similar formula for %dd3:

To that end we consider the continuous infinite beam
model of Fig. 9b. For this beam wðxÞ ¼ w (a constant)
(see Fig. 10b) and the three geometric boundary

Fig. 9. Illustration of the longitudinal actin filaments modeled as

continuous infinite beams with two types of loadings; the two types of

loadings are illustrated in (a) and (b). (a) A typical longitudinal actin

filament in the interior portion of the cell process cytoskeletal structure

where the load is applied by the fimbrin cross-links in alternate

directions in a staggered fashion. (b) This continuous infinite beam

models an exterior longitudinal actin filament. It is loaded in one

direction by the fimbrin cross-links and in the other direction by a

continuously distributed load representing the applied external loading

due to the extracellular matrix.

Fig. 10. Illustration of the unit length of the longitudinal actin

filaments modeled as continuous infinite beams with the two types of

loading, the two types of loading described in Fig. 9. (a) A typical

longitudinal actin filament in the interior portion of the cell process

cytoskeletal structure loaded by fimbrin links in alternate directions in

a staggered fashion. (b) This continuous infinite beam models a

peripheral longitudinal actin filament beneath the process membrane.

It is loaded in one direction by the fimbrin cross-links and in the other

direction by a continuously distributed load representing the applied

external loading.
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conditions for this beam are the same as they were for
the beam in Fig. 9a. The equation of three moments
again supplies the missing condition, the moment at a
point of application of the force P: The moment is found
to be equal to w�l22=12: The mean deflection is then
given by

%dd3 ¼
Pl32

720EI
; ðB:4Þ

This result gives the deflection %dd3; in terms of the flexural
rigidity EI of the longitudinal actin filament, the force
P ¼ w�l2 that the fimbrin cross-link exerts transversely
on the infinite beam, and the length l2: Substituting the
results (B.3) and (B.4) into (B.1) a reduced expression
for the desired E� is obtained:

E * ¼
203EI

l42
: ðB:5Þ
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