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ABSTRACT: Fluid flow is an important regulator of cell function and metabolism in many tissues. Fluid shear stresses have been used
to level the mechanical stimuli applied in vitro with what occurs in vivo. However, these experiments often lack dynamic similarity,
which is necessary to ensure the validity of the model. For interstitial fluid flow, the major requirement for dynamic similarity is the
Reynolds number (Re), the ratio of inertial to viscous forces, is the same between the system and model. To study the necessity of
dynamic similarity for cell mechanotransduction studies, we investigated the response of osteocyte-like MLO-Y4 cells to different Re
flows at the same level of fluid shear stress. Osteocytes were chosen for this study as flows applied in vitro and in vivo have Re that are
orders of magnitude different. We hypothesize that osteocytes’ response to fluid flow is Re dependent. We observed that cells exposed to
lower and higher Re flows developed rounded and triangular morphologies, respectively. Lower Re flows also reduced apoptosis rates
compared to higher Re flows. Furthermore, MLO-Y4 cells exposed to higher Re flows had stronger calcium responses compared to lower
Re flows. However, by also controlling for flow rate, the lower Re flows induced a stronger calcium response; while degradation of
components of the osteocyte glycocalyx reversed this effect. This work suggests that osteocytes are highly sensitive to differences in Re,
independent of just shear stresses, supporting the need for improved in vitro flow platforms that better recapitulate the physiological
environment. � 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:663–671, 2018.
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Many types of cells (e.g., endothelial cells1 and
bone cells2) are constantly subjected to, and re-
spond to, fluid flow physiologically. In vitro,
researchers typically investigate cellular response
to different levels of fluid shear stresses (FSS).3–5

Other fluid flow parameters, such as flow rate,6,7

flow profile type,8–10 and oscillatory frequency3

have also been investigated. These parameters can
be varied by increasing the syringe pump stroke
length, changing the loading frequency,3 using
different flow profiles,9 or changing the viscosity of
the fluid.6 These studies suggest that these param-
eters can also affect cellular responses to fluid flow
stimulation. However, one group of important flow
parameters, the dimensionless numbers that define
the dynamic property of the fluid flow environment,
has yet to be carefully examined.

One of these parameters is the Reynolds number,
Re, which is the ratio of inertial forces (fluid momen-
tum) to viscous forces (fluid friction). Furthermore, Re
can be described as the ratio of dynamic pressure to
shearing stresses, as defined by Equation (1).

Re ¼ rVð ÞV
mV
DH

¼ rVDH

m
ð1Þ

Where r is the fluid density, V is the fluid velocity, DH

is the hydraulic diameter, and m is the fluid dynamic
viscosity. In addition to being a parameter of flow, Re
also determines whether or not a fluidic model has
dynamic similarity with the system it is modeling. The
use of dynamic similarity in fluidic modeling is well
established in the aerospace and naval industry.
However, this important factor has yet to be incorpo-
rated in most in vitro fluid models. Anderson et al.11

pioneered investigating the importance of dynamic
similarity in a scaled physical model to measure the
osteocyte pericellular space permeability. Neverthe-
less, many biological systems involve fluid flow occur-
ring at different magnitudes of Re than is investigated
in vitro. As such, it has not been determined whether
cells are sensitive to modifications to the specific flow
environment due to changes in Re, and whether this
concept of dynamic similarity should also be applied to
biological fluid models.

In this study, we investigated the response of
osteocytes in different flow environment with different
Re. Osteocytes are terminally differentiated bone cells
that are sensitive to various mechanical stimuli,
including FSS.3,8,12 Osteocytes are embedded within
the bone matrix in the lacunar-canalicular system
(LCS). When a load is applied to bone the bone matrix
is compressed, driving fluid flow within the LCS, and
applying FSS to the osteocytes.2 This stimulation
modifies osteocyte signal expression and behavior,
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which has major implications on the mechanical
properties and homeostasis of bone.13,14

To study specific osteocyte responses to FSS, many
in vitro studies have been performed using parallel
plate flow chambers (PPFC)3,8,12,15 at physiologically
measured FSS.16 However, the fluid flow applied to
the cells is not necessarily physiological as the Re
applied in PPFCs are typically 10–120, while the Re in
the canaliculi is �10�5 (Table 1).3,9,15–17 We speculate
that this difference in dimensional flow environment
can affect the cellular response. For example, this
could explain the observation of osteocytes in situ
having more calcium oscillations compared to osteo-
cytes in vitro when exposed to similar levels of
FSS.10,18,19 Therefore, we hypothesize that osteocytes
respond differently to different Re controlled flow
environments, even when FSS is kept constant.

In this study, we applied different Re flows to
osteocytes while keeping the FSS level the same by
using microfluidic devices with varying channel
dimensions. We analyzed the effect that different flow
environments, as controlled by the Re, had on osteo-
cytes with respect to changes in cell morphology,
cytoskeleton organization, apoptosis, and intracellular
calcium response. Although numerous studies have
been utilized to investigate cellular responses to differ-
ent flow parameters by modifying microfluidic channel
dimensions,20–22 this is the first time that Re has been
investigated as one of the important parameters of the
flow environment applied to osteocytes. This work is
important in determining whether dynamic similarity
and dimensionality should be taken into account when
developing future in vitro fluid models, and could be

applied to other cells that are studied using PPFCs,
such as endothelial cells.

MATERIALS AND METHODS
Device Design and Fabrication
Different channel heights, h, and widths, w, (Fig. 1A) were used
to change the hydraulic diameter of the microfluidic channel. To
keep wall FSS, tw (Equation 2) constant between devices, flow
rates, Q, and/or the dynamic viscosity were adjusted accordingly.

tw ¼ 6Qm

h2w
ð2Þ

A summary of experimental parameters can be found in
Table 2. For experiments where flow rate is also kept
constant (experimental setup 5 and 6), different channel
dimensions than setup 1–4 were used to maintain channel
aspect ratios of at least 5.

The devices were fabricated using standard soft lithog-
raphy techniques. Briefly, SU-8 2050 (Microchem, Newton,
MA) was spun on a glass slide to the desired channel
height. The SU-8 was exposed to UV-light under a photo-
mask of the channels (CAD Art Services, Bandon, OR), and
SU-8 developer (Microchem) was applied to remove the
uncured SU-8. Channel dimensions were measured with a
profilometer to have a deviation from the average of only
3mm. Polydimethylsiloxane (PDMS) (Dow Corning, Auburn,
MI) was mixed at a 10:1 ratio of elastomer to curing agent,
and cured for 2 h at 80˚C on the mold. The PDMS device
was cut from the mold, inlet and outlet holes were punched
into the device, and the device was air plasma bonded to a
glass slide.

Cell Culture
Osteocyte-like MLO-Y4 cells (a gift from Dr. Lynda Bone-
wald, Indiana University) were maintained on Collagen-I

Table 1. Calculation of In Vivo and In Vitro Re

Physiological DH¼Do�Di (nm) Vavg (mm/s) m (10�3 Pa � s) r (kg/m3) Re

Canaliculi 15517 6016 1.06a 1025a 0.9� 10�5

Flow chamber W (mm) H (mm) Qb (ml/min) m (10�3 Pa � s) r (kg/m3) Re

Jacobs et al.9 10 0.28 18 1.06 1025 56
Li et al.3 38 0.28 14–141 1.06 1025 12–118
Kulkarni et al.15 24 0.3 20.4 1.06 1025 27
aAssume value for salt water. bFlow rates calculated from shear stresses provided by labs.

Figure 1. (A) Channel layouts of channels with
widths (W) of 1.5, 1.0, and 0.5mm. Inlet and outlet
ports to the syringe pump and waste media reservoir
are presented. (B) Experimental setup of the micro-
fluidic device within the manifold.
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(5% Collagen-I [Corning, Corning, NY], 95% 0.02N Acetic Acid
[Sigma–Aldrich St. Louis, MO]) coated petri dishes (VWR,
Radnor, PA). The cells were maintained with MLO-Y4 media
consisting of 94% a-MEM (Thermo Fisher Scientific, Waltham,
MA), 2.5% Calf Serum (CS) (Thermo Fisher Scientific), 2.5%
Fetal Bovine Serum (FBS) (Thermo Fisher Scientific), and 1%
Penicillin Streptomycin (P/S) (Thermo Fisher Scientific). Once
the cells achieved 80% confluence, the cells were passaged and
re-seeded at 300k cells per dish up to passage 40.

Experimental Device Preparation
For experiments, the device was placed into a manifold
(Fig. 1B) using techniques previously reported.23 A detailed
description of this setup can be found in the supplemental
methods. MLO-Y4 cells were then seeded in the device at a
density of 1� 106 cells/ml and allowed to attach for 2h at
37˚C in an incubator. MLO-Y4 media was added to the
reservoir, and perfused (1ml/min) through the channels for a
minimum of 1 day. Afterwards, when the cells reached 80%
confluence, flow experiments were performed. Flow rates for
each experiment were validated by measuring the displaced
volume after the experiment completed.

Cell Spreading Analysis
Cells were imaged at the same locations immediately before
and after flow (setup 1 and 2, steady, 1Pa, 2 h) was applied
to the channels. To determine the cell spreading area,
images taken across the entire channel width were proc-
essed using ImageJ (NIH, Bethesda, MD). First, a thresh-
old was set to the image such that only the cells were
highlighted and the “analyze particles” function was used
to determine each cell area.

Actin Filament Staining
After flow (setup 1 and 2, steady, 1Pa, 2 h), the cells were
fixed in 3.7% formaldehyde (Sigma–Aldrich) diluted in
Dulbecco’s phosphate buffered saline (DPBS) (Sigma–
Aldrich). The cells were permeabilized with 0.1% Triton-X
(Sigma–Aldrich) diluted in DPBS. Actin fibers were stained
with Alexa Fluor1 488 Phalloidin (Thermo Fisher Scien-
tific) diluted 1:40 in DPBS, and the nuclei were stained
with DAPI (Sigma–Aldrich) diluted 1:1,000 in DPBS. The
cells were rinsed with deionized water and fluorescently
imaged in the center of the channels. Cells were quantified
in terms of cytoskeleton morphology, where “rounded” cells
have no extended processes, “elongated” cells have one or
two processes, “triangular” cells have three processes, and
“dendritic” cells have more than three processes. This type
of quantification has previously been applied to osteoblasts
and osteocytes undergoing fluid flow.8 Static channels were
prepared as a control.

Apoptosis Analysis
After steady flow (setup 1 and 2, steady, 1Pa, 2h), the cells
were supplied a perfusion flow (1ml/min) of media for 2 h.
Phase contrast images were taken to determine the total
number of cells in the channels. Trypan blue (Sigma–
Aldrich) was added to the channels to stain for apoptotic cells
as has been previously demonstrated.24–26 The channels
were imaged across the width of the entire channel with
bright field microscopy, and apoptotic cells (blue) were
counted to determine the percentage of apoptotic cells.

Calcium Staining
To assess mechanosensitivity, we quantified osteocyte intra-
cellular calcium response to different Re flow environments.
A Fura-2 AM dye solution was prepared by mixing 50mg of
Fura-2 AM (Thermo Fisher Scientific) with 50ml of dimethyl
sulfoxide (Sigma–Aldrich). This solution was diluted to a
final concentration of 10mM in 5ml of working media (97%
a-MEM without phenol red, 1% FBS, 1% CS, 1% P/S).

The cells were first rinsed with DPBS, and the dye solution
was loaded into the channel and allowed to incubate at room
temperature for 45min. The cells were again rinsed with DPBS,
and loaded with working media. The device rested on the
fluorescent microscope for 30min before flow was applied. For
the experiment, cells were recorded in real-time using Easy-
RatioPro (PTI). For 3min before flow, the cells were ratiometri-
cally imaged (340nm/380nm) to determine a baseline of Ca2þ

signaling. Steady flow (2.5Pa or 1.5Pa) was then applied for
3min, followed by 3min of no-flow. Calcium measurements from
at least 20 cells located at the center of the channel were
analyzed using a previously developed MATLAB (MathWorks,
Natick, MA) script,27 which compares calcium peaks after flow
started to the maximum peak observed in the baseline region, to
quantify the percentage of responding cells and magnitude of the
calcium peak. A significant calcium spike was taken to be at
least twice the magnitude of the maximum baseline calcium
spike.

Three conditions for the calcium experiments were per-
formed. In the first (setup 3 and 4), FSS was kept constant
while Re was varied. In the second (setup 5 and 6), both FSS
and flow rates were kept constant by modifying the media
viscosity using dextran. In the final experiment (setup 5 and 6),
FSS and flow rates were again kept constant, but the glycocalyx
was degraded to modify osteocyte mechanosensitivity.

Dextran Media
Dextran (500k MW) (Sigma–Aldrich) was mixed in working
media to a concentration of 4.7mg/ml. The viscosity of the
dextran media was measured at different shear rates (10–
1,000 s�1) using an AR 2000 rheometer (TA Instruments,

Table 2. Dimensions and Flow Parameters

Setup # Rea w (mm) h (mm) Q (ml/min) Vavg (cm/s) m (10�3 Pa � s) t (Pa) Vavg�m (10�5 Pa �m)

1 1.6� 0.2 1.5 50 53.6 1.19 0.7 1 0.83
2 16.8 � 0.6 1 170 412.9 4.05 0.7 1 2.83
3 2.5 � 0.3 1.5 50 104.2 2.32 0.9 2.5 2.08
4 25.4 � 0.8 1 170 802.8 7.87 0.9 2.5 7.08
5 0.29 � 0.02 1 120 45.7 0.63 4.73 1.5 3.00
6 2.9 � 0.2 0.5 74 45.7 2.06 0.9 1.5 1.85
aStandard deviations calculated based on measured deviations in channel heights of up to 3mm.
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New Castle, DE) (courtesy of Dr. David James, University of
Toronto), corresponding with a FSS of 0.049–4.8Pa.

Glycocalyx Degradation
Proteoglycans making up the osteocyte glycocalyx were
removed by enzymatic digestion as previously described.28

Heparinase III from flavobacterium herparinum (Sigma–
Aldrich) was reconstituted in a solution of 20mM Tris-HCl
(Lonza, Basel, Switzerland), 0.1mg/ml Bovine Serum Albu-
min (BioShop, Canada, Inc., Burlington, Ontario, Canada),
and 4mM CaCl2 (Sigma–Aldrich) to a concentration of 20U/
ml. This was further diluted in MLO-Y4 media to a final
concentration of 0.4U/ml. The enzyme solution was applied
to osteocytes in the microfluidic channel for at least 2 h
before the experiment to remove Heparan Sulfates (HS).

To validate that HS was degraded, we stained cells with or
without exposure to Heparinase III with Wheat Germ Aggluti-
nin (WGA) conjugated with Alexa Fluor1 488 (Thermo Fisher
Scientific). A stock solution of WGA (1mg/ml) was diluted in
Hank’s Balanced Salt Solution (HBSS) (Thermo Fisher Scien-
tific) without phenol red to a concentration of 5mg/ml. The
staining solution was added to the cells for 10min at 37˚C. The
cells were rinsed two times with DPBS and fluorescently
imaged. Cell fluorescent intensities were quantified in ImageJ
after subtracting the background intensity.

Statistics
The student t-test was performed on the cell spreading,
apoptosis, calcium, and enzyme digestion data. One-way

ANOVA was performed on the actin data, followed by a
pair-wise t-test. Finally, the Holm–Bonferroni method was
applied to the actin and calcium data to account for
multiple comparisons. Statistical significance was taken at
a¼ 0.05.

RESULTS
Cell Spreading Area
Before flow, the MLO-Y4 cells displayed their charac-
teristic dendritic morphology (Fig. 2A and C). After
flow, cells exposed to a higher Re flow maintained
their morphology (Fig. 2D), while those exposed to a
lower Re flow became rounded (Fig. 2B). Quantifica-
tion of cell spreading area confirmed this observation,
as the higher Re cells had no significant change in cell
spreading, while the lower Re cells had a 14% reduc-
tion in cell spreading area (Fig. 2E).

Actin Filament
Characteristic images of the actin filaments with or
without FSS are presented in Figures 3A–C. Upon
quantification of the actin morphologies, we observed
that, given a higher Re flow, there was a 79% increase
in the percentage of “triangular” cells, and a 36%
reduction in the percentage of “elongated” cells rela-
tive to the static control (Fig. 3D). When exposed to a
lower Re flow, we observed a 111% increase in the

Figure 2. Phase contrast images of MLO-Y4 cells
in (A, B) low Re and (C, D) high Re (C,D) microfluidic
channels (A, C) before and (B, D) after flow. (E)
Quantification of change of area from ImageJ. Error
bars are one standard deviation. N¼4 for lower Re
and N¼ 3 for higher Re. ��p<0.01.
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percentage of “rounded” cells relative to static
(Fig. 3D).

Apoptosis
After flow, we observed low apoptosis rates in both
microfluidic channels (<10%). We also observed that
cells exposed to the lower Re flow had a significantly
lower apoptosis rate (3%) compared to those exposed to
a higher Re flow (7%) (Fig. 4).

Intracellular Calcium Response
Shear Stress Constant
When only FSS was held constant, we observed no
difference in the percentage of responding cells be-
tween the two Re flow environments (Fig. 5A). How-
ever, the magnitude of the response was increased for
the higher Re flow (4.3�) than the lower Re flow
(2.8�) (Fig. 5B).

Shear Stress and Flow Rate Constant
We measured that the viscosity of the dextran media
was 4.73� 10�3 Pa � s and independent of shear rate
(Fig. 6A). When both flow rate and FSS were kept
constant, an increased percentage of cells responded to
the lower Re flow (88%) than the higher Re flow (30%)
(Fig. 6B). We similarly observed that the magnitude of
the response was stronger for cells exposed to the
lower Re flow (4.3�) than the higher Re flow (2.5�)
(Fig. 6C).

Shear Stress and Flow Rate Constant—HS Digested
After digestion, we observed a 42% decrease in fluores-
cent intensity relative to the background (Fig. 7A).
The remnant fluorescence is likely due to WGA
binding to Hyaluronic Acid, which was not digested.29

After digestion, we observed that there was no differ-
ence in the percentage of responding cells given either
Re flow environment (Fig. 7B). However, we did
observe an increased magnitude of response given a
higher Re flow (5.4�) compared to a lower Re flow
(3.2�) (Fig. 7C).

DISCUSSION
For a scale model to be a valid representation of the
real-world system, the two must have dynamic simi-
larity in the flow environment, thereby requiring the
same Re. However, despite its prevalence in various
industries, this concept of dynamic similarity has yet
to be significantly applied to in vitro models of biologi-
cal fluid systems. To elucidate the role that the Re
regulated flow environment plays in cell mechano-
transduction, we utilized different dimensioned micro-
fluidic channels to generate different Re flows while
keeping other fluid flow parameters constant. As well,
the small entrance lengths of these channels (order of
microns) allowed for the mitigation of a significant
limitation of PPFCs, where a significant area of the
chambers do not undergo fully developed flow.30 We

Figure 3. Actin filament staining of MLO-Y4 cells
(A) before and (B, C) after 2h of 1Pa fluid shear
stress given (B) lower and (C) higher Re flows. (D)
Plot of proportion of different cytoskeletal morpholo-
gies after exposure to lower and higher Re flows
normalized to static (signified by the red line). N¼4
for higher Re and N¼3 for lower Re and static. Error
bars are one standard deviation as calculated by
propagation of error. $p< 0.05 compared to static.�
p<0.05, ��p< 0.01 for comparisons between lower
and higher Re.

Figure 4. Characteristic bright field images of
MLO-Y4 cells stained with Trypan Blue in the (A)
lower and (B) higher Re channels. Circles identify
positively stained cells. Different intensity in channel
color is due to differences in channel heights. (C)
Quantification of apoptosis rates in both the lower
and higher Re channels. Error bars signify one
standard deviation. N¼5 for the lower Re channel
and N¼ 8 for the higher Re channel. �p<0.05.
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used osteocytes, the main mechanosensory cells in
bone,31 to investigate how different Re flow environ-
ments affected cell morphology, actin filament rear-
rangement, apoptosis rate, and intracellular calcium
expression. This study is the first time that the Re has
been used to control the flow environment and investi-
gate its effect on osteocyte mechanoresponse.

Under a lower Re flow, we first observed a signifi-
cant reduction in cell spreading area that was not
observed given a higher Re flow (Fig. 2). Similarly,
when we stained for actin, we observed that osteocytes
tend to lose their dendritic appearance and switch to a
“rounded” morphology given a lower Re flow, while,
under a higher Re flow, the cells tend to develop a
predominantly ‘triangular’ morphology (Fig. 3). One
method osteocytes respond to flow is the upregulation
of E11/gp38 mRNA,32 which promotes process forma-
tion and lengthening.33 As well, it has been demon-
strated that the application of FSS to osteocytes
stimulates actin filament reorganization,8 which con-
trols the morphology and shape of the cell body and
processes.34 Although this result suggests that osteo-
cytes are sensitive to dynamic differences in the flow
environment besides shear stress, the question
remains through what mechanism this response
occurs. Since Re is defined as a ratio of dynamic
pressure to shear stresses, and since we keep shear
stresses constant within experimental groups, increas-
ing dynamic pressure by increasing Re could induce
this response as volume modulating forces have been
demonstrated to stimulate cytoskeletal reorganiza-
tion.5 It has also been previously suggested that
chemotransport regulates bone cell mechanosensitiv-
ity.7 In this experimental setup (setup 1 and 2),
osteocytes exposed to higher Re flows undergo flow
rates that are 8 times larger than those experiencing

the lower Re flow. It has been speculated that low
chemotransport results in a buildup of waste products
and/or a lack of adequate nutrient replacement that
could result in decreased cellular mechanosensitivity.6

Although this chemotransport effect exists in vitro, it
is unlikely to be significant physiologically, where
applied flow rates are significantly lower,16 as fluid
mixing in the LCS due to oscillatory flow allows for
sufficient nutrient supply.35

To assess whether a decrease in chemotransport in
the lower Re experiments would affect cell viability,
we quantified cell apoptosis after flow. After exposure
to either Re flow environment, osteocytes were ob-
served to have low apoptosis rates (<10%). Further-
more, the apoptosis rate in the higher Re experiment
was larger than observed given a lower Re flow
(Fig. 4). This result suggests that the observed cell
rounding was not due to cell apoptosis. However, it is
unclear why the higher Re flow environments are
inducing increased rates of apoptosis, and further
investigation is needed to understand the mechanisms
involved.

To assess the mechanosensitivity of osteocytes given
different Re flow environments, we investigated their
intracellular calcium response. When osteocytes are
mechanically stimulated, calcium enters the cell cyto-
sol from both the endoplasmic reticulum and the
surrounding extracellular fluid.12 When only FSS was
kept constant, we observed that osteocytes exposed to
a higher Re flow had an increase in the calcium peak
magnitude (Fig. 5B), supporting our previous observa-
tion that osteocytes exposed to a higher Re flow are
more mechanosensitive.

Since flow rate was identified as a potential regula-
tor of osteocyte response to the flow environment, we
next kept both the FSS and flow rate constant. We

Figure 5. (A) Percentage of imaged cells that had a
calcium response of at least twice the baseline and
(B) average magnitude of the calcium spike of the
responding cells when only shear stress is kept
constant at different Re. N¼5. Error bars are one
standard deviation. �p<0.05.

Figure 6. (A) Dextran media viscosity at different
shear rates. N¼ 5. (B) Percentage of cells responding
with a calcium peak of at least two times the
maximum baseline response and (C) the mean magni-
tude of the calcium response of the responding cells
when flow rate is also kept constant using a dextran
media. N¼ 4. Error bars are on standard deviation.
�p<0.05, ��p<0.01.
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observed that osteocytes exposed to a lower Re flow
demonstrated significant increases in both the percent-
age of responding cells (Fig. 6B) and mean magnitude
of the response (Fig. 6C). This result demonstrates the
importance that flow rate has on regulating osteocyte
mechanosensitivity. As well, since the higher Re flow
also has an increased dynamic pressure, this suggests
that flow rate has a more significant role in regulating
osteocyte mechanosensitivity. However, since a differ-
ence still exists in osteocyte mechanoresponse, another
mechanism likely exists through which osteocytes
sense their specific Re flow environment. Due to the
high fluid viscosity used in the lower Re channel, we
suspected that osteocytes were sensing this viscous
force through mechanisms other than FSS, such as
drag forces applied to the osteocyte glycocalyx.

It has been established that the osteocyte glycoca-
lyx regulates various osteocyte mechanoresponses29,36

and its degradation in vivo significantly impacts
bones response to flow.37 It has been suggested that
the dominant force experienced by osteocytes in vivo
comes from drag forces (caused by cellular elements
that resist fluid flow) as opposed to shearing
forces.37–39 Furthermore, in endothelial cells, it has
been modeled that the drag stresses applied to the
glycocalyx are proportional to the fluid viscosity and
superficial fluid velocity.40 When we multiplied the
viscosity and velocity for each experimental condition
(Table 2), we observed that increases in this value
corresponded with an increased mechanoresponse.

To understand the role of the osteocyte glycocalyx
in mechanosensation, we investigated osteocyte cal-
cium responses to flow after degradation of HS. We
observed that digestion of HS resulted in an increase
in the magnitude of the response to a higher Re flow
(Fig. 7C), suggesting a decreased effect of drag forces

on osteocyte mechanosensitivity. Analytical modeling38

of the osteocyte pericellular matrix suggested that
digestion of the osteocyte glycocalyx would decrease
the force ratio (drag force/shear force) due to increased
fiber spacing, potentially explaining the reduced rela-
tive calcium response when exposed to a lower Re
flow. Previous research on the osteocyte glycocalyx has
also demonstrated that it is critical in the formation of
mechanosensory integrins.41 Furthermore, it has been
demonstrated that degradation of the glycocalyx re-
duced osteocytes Prostaglandin E2 response to FSS.29

However, that study did not observe any effect on
calcium signaling after degradation, which the author
postulated was due to equal and opposite effects of
glycocalyx degradation on the cell surface FSS and
drag force applied.29 Due to different conditions in our
experiments, this balance between surface FSS and
drag force has likely been affected. Regardless, more
investigation is clearly needed to study the role of the
glycocalyx on osteocyte mechanosensitivity.

Although this work demonstrated the Re depen-
dency of osteocytes mechanosensitivity to fluid flow
through various mechanisms, there are some limita-
tions to this study. First, the range of Re of the flow
environments that were investigated are still orders of
magnitude larger than physiological. To produce rele-
vant Re in vitro, channel hydraulic diameters must be
reduced and/or fluid viscosities must be increased.
Additionally, we only indirectly quantified the shear
stresses (by setting the flow rate) applied to the
osteocytes. By utilizing advanced flow imaging techni-
ques, such as micro-particle image velocimetry, we
could more accurately measure the specific stresses
applied to the cells.42 A further limitation is that this
is a 2D model of a 3D system. A critical component of
osteocyte mechanosensation in vivo is the formation of

Figure 7. (A) Plot of cell fluorescent intensities
relative to the background, as well as characteristic
images of normal and HS digested osteocytes after
WGA staining. N¼6. (B) Percentage of cells respond-
ing with a calcium peak of at least two times the
maximum baseline response. (C) The mean magni-
tude of the calcium response of the responding cells
after digestion of HS when flow rate and shear stress
are kept constant. N¼3. Error bars are one standard
deviation. �p<0.05, ���p<0.001.
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cellular attachments to the canalicular wall.38 Micro-
scale platforms have recently been developed to better
mimic the dimensions and orientation of the LCS.43,44

Although these platforms have yet to be utilized to
study osteocyte mechanotransduction, flow studies
using these platforms could provide more physiologi-
cally relevant data. Similarly, aberrations in the peri-
canalicular space have been suggested to produce
localized regions of concentrated stresses on osteocyte
processes,45,46 higher than what is currently mea-
sured. Future enhancements of microfluidics technolo-
gies could allow for the incorporation of fluid stress
concentrators to further increase the relevance of
these studies.

This study is the first time that osteocyte mechano-
sensitivity dependency on dimensional modifications of
their flow environments, the Re number, is investi-
gated in vitro. In this study, we identified that flow
environments with different Re numbers regulated
osteocyte mechanoresponses in terms of morphology,
cytoskeleton organization, apoptosis rate, and calcium
response. We identified that these differing responses
were, at least in part, due to differences in flow rates
and drag forces acting on the cells. Furthermore,
sensitivity to these parameters can potentially explain
differences in osteocyte mechanoresponses observed by
different labs in the bone mechanobiology community,
and highlights the need for incorporating constantly
improving microfluidic platforms into in vitro bone cell
research. This type of study could also be applied to
other mechanosensitive cells, such as endothelial cells,
which are typically studied using PPFCs.
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